

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

UnityPy

[image: _images/embed.png]Discord server invite [https://discord.gg/C6txv7M]
[image: _images/UnityPy.svg]PyPI supported Python versions [https://pypi.python.org/pypi/UnityPy]
[image: _images/6ff7cc7b318cfcf37024bffee1e770406941265c.svg]Win/Mac/Linux
[image: _images/UnityPy1.svg]MIT [https://github.com/K0lb3/UnityPy/blob/master/LICENSE]

A Unity asset extractor for Python based on AssetStudio [https://github.com/Perfare/AssetStudio].

	Installation [https://github.com/K0lb3/UnityPy#installation]

	Example [https://github.com/K0lb3/UnityPy#example]

	Important Classes [https://github.com/K0lb3/UnityPy#important-classes]

	Important Object Types [https://github.com/K0lb3/UnityPy#important-object-types]

	Goals [https://github.com/K0lb3/UnityPy#goals]

	Motivation [https://github.com/K0lb3/UnityPy#motivation]

	Community [https://github.com/K0lb3/UnityPy#community]

Installation

Python 3.6.0 or higher is required

UnityPy

core package

pip install UnityPy

or download/clone the git and use

python setup.py install

optional packages

	python-fsb5 [https://github.com/HearthSim/python-fsb5] - required to extract samples from AudioClips

pip install fsb5

Cython required

All of the following packages decompress specific texture formats and require Cython [https://cython.org/].

It’s highly recommended to install the following modules to enjoy the full power of UnityPy.

Windows users have to install Microsoft Visual C++ 14.0 Build Tools Only [http://go.microsoft.com/fwlink/?LinkId=691126&fixForIE=.exe] to be able to use Cython.

	decrunch [https://github.com/HearthSim/decrunch] - crunch texture support

	etcpack [https://github.com/K0lb3/etcpack] - ETC texture support

	pvrtc_decoder [https://github.com/K0lb3/pvrtc_decoder] - PVRTC Texture Support

	astc_decomp [https://github.com/K0lb3/astc_decomp] - ASTC Texture Support

pip install decrunch
pip install etcpack
pip install pvrtc_decoder
pip install astc_decomp

Example

The following is a simple example.

import os
from UnityPy import AssetsManager

def unpack_all_assets(source_folder : str, destination_folder : str):
 # iterate over all files in source folder
 for root, dirs, files in os.walk(source_folder):
 for file_name in files:
 # generate file_path
 file_path = os.path.join(root, file_name)
 # load that file via AssetsManager
 am = AssetsManager(file_path)

 # iterate over all assets and named objects
 for asset in am.assets.values():
 for obj in asset.objects.values():
 # only process specific object types
 if obj.type in ["Texture2D", "Sprite"]:
 # parse the object data
 data = obj.read()

 # create destination path
 dest = os.path.join(destination_folder, data.name)

 # make sure that the extension is correct
 # you probably only want to do so with images/textures
 dest, ext = os.path.splitext(dest)
 dest = dest + ".png"

 img = data.image
 img.save(dest)

You probably have to read Important Classes [https://github.com/K0lb3/UnityPy#important-classes]
and Important Object Types [https://github.com/K0lb3/UnityPy#important-object-types] to understand how it works.

People who have slightly advanced python skills should take a look at AssetBatchConverter.py [https://github.com/K0lb3/UnityPy/blob/master/AssetBatchConverter.py] for a more advanced example.

Important Classes

AssetsManager [https://github.com/K0lb3/UnityPy/blob/master/UnityPy/AssetsManager.py]

AssetsManager loads and parses the files that are given to it.
It can be initialized via:

	a file path - apk files can be loaded as well

	a folder path - loads all files in that folder (bad idea for folders with a lot of files)

	a stream - e.g. io.BytesIO, filestream,…

	a bytes object - will be loaded into a stream

UnityPy can detect itself if the file is a WebFile, BundleFile, Asset or APK itself.

The unpacked assets will be loaded into .assets, which is a dict consisting of asset-name : asset.

from UnityPy import AssetsManager
am = AssetsManager(src)

for asset_name, asset in am.assets.items():
 pass

Asset

Assets are a container that contains multiple objects.
One of these objects can be an AssetBundle, which contains a file path for some of the objects in the same asset.

All objects can be found in the .objects dict - {ID : object}.

The objects which have a file path can be found in the .container dict - {path : object}.

Object

Objects contain the actual files which, e.g. textures, text files, meshes, settings, …

To acquire the actual data of an object it has to be read first, this happens via the .read() function. This isn’t done automatically to save time because only a small part of the objects are of interest.

Important Object Types

All object types can be found in UnityPy/classes [https://github.com/K0lb3/UnityPy/tree/master/UnityPy/classes].

Texture2D [https://github.com/K0lb3/UnityPy/blob/master/UnityPy/classes/Texture2D.py]

	.name

	.image converts the texture into a PIL.Image

	.m_Width - texture width (int)

	.m_Height - texture height (int)

Sprite [https://github.com/K0lb3/UnityPy/blob/master/UnityPy/classes/Sprite.py]

Sprites are part of a texture and can have a separate alpha-image as well.
Unlike most other extractors (including AssetStudio) UnityPy merges those two images by itself.

	.name

	.image - converts the merged texture part into a PIL.Image

	.m_Width - sprite width (int)

	.m_Height - sprite height (int)

TextAsset [https://github.com/K0lb3/UnityPy/blob/master/UnityPy/classes/TextAsset.py]

TextAssets are usually normal text files.

	.name

	.script - binary data (bytes)

	.text - script decoded via UTF8 (str)

Some games save binary data as TextFile, so it’s usually better to use .script.

MonoBehaviour [https://github.com/K0lb3/UnityPy/blob/master/UnityPy/classes/MonoBehaviour.py]

MonoBehaviour assets are usually binary data that has to be decoded.
e.g. via msgpack, protobuf

	.name

	.script- binary data (bytes)

AudioClip [https://github.com/K0lb3/UnityPy/blob/master/UnityPy/classes/AudioClip.py]

	.samples - {sample-name : sample-data} dict

Goals

WIP

	a documentation

	the ability to edit assets (like in UABE)

planned

	support for more object types

	code optimization

	speed-ups via C-extensions

	multiprocessing

Motivation

I’m an active data-miner and noticed that unitypack has problems with new unity assets.
The problem in unitypack isn’t that easy to fix and the undocumented code is a bit hard to understand.
That’s why I tried other tools like UABE and AssetStudio. Sadly none of these tools can be used like unitypack.
That’s why I started this project.

Community

Discord [https://discord.gg/C6txv7M]

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_images/embed.png
@ 4ONLINE

_static/comment-bright.png

